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Quantum response to classical transitions
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The richness and complexity of two-dimensional parameter space of the kicked Harper model is exploited to
demonstratequantum fingerprints of all classical transitian¥he quantum system appears to follow the
corresponding classical systemparameter but not in timé the localized, critical as well as in the ballistic
regimes. Therefore, the relationship between quantum and classical systems appears to be universal when
measured by their response to parameter changes. Additionally, a rather intriguing feature of quantum eigen-
states is a set of critical points sprinkled in the regime where the classical dynamics is diffusive. These are the
boundary points of the ballistiflocalized patches in the localize¢ballistic) regime that survive in the
semiclassical limit.
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The subject of classical-quantum correspondence in noriHere q,p is a canonically conjugate pair of variables on a
integrable Hamiltonian systems is an open frontier in nonlincylinder. For smallK(L), the transport is restricted along
ear dynamics. The fact that the quantum system could exhibii(q) due to Kolmogorove-Arnold-MosetKAM ) tori (Fig.
localized, diffusive, or ballistic behavior in the classically 1). Interestingly, the KAM regime emanates as fractal
chaotic regime is an open puzzle in the forefront of fundatongues in two-dimensional parameter space. The tongues
mental physic$1]. In spite of the absence of direct classical- exist all the way up td.— o and appear to be exact replicas
guantum correspondence, studies revealing quantum fingesf each other after a nontrivial scaling of the parameters.
prints of classical behavior are important to understandingeach tongue is approximately confined to a tterval in
the Ehrenfest theorem for nonintegrable systems. This papeiie L parameter while the correspondikgnterval decreases
focuses on exploring the quantum response to classical tragsymptotically as~1/log(L). For smallK, the KAM to dif-
sitions in ballistic as well as localized phases of the quantunfusive boundary appears to be linear in parameters.
system. The kicked Harper modé,3] is particularly suited For the quantum system, we investigate both the finite
for this as its two-dimensional parameter space is landscapeaiine and the infinite time dynamics. The former is studied
by an intricately nested phasg3,4] and the quantum dy- with plane wave initial conditions using fast Fourier trans-
namics can be ballistic, diffusive, as well as localized in theform with N (up to 2°) Fourier basis of unperturbed eigen-
classically diffusive regime. The central result of our studiesstates. The latter is studied with very high precision using the
is that although quantum and classical may not follow eachenormalization grougRG) approach4]. We consider irra-
other intime, they follow each other iparameterand hence tional # values with a golden tail= 27r/{nh+[\/—5)
all classical transitions arfelt in the corresponding quantum — 1)/2, wheret: is varied by varying integenh. Clear fin-
model. This suggests a rigorous footing for a universal relagerprints of classical KAM tongues with associated paramet-
tionship between classical and quantum transgrtall  ric periodicity appear in the corresponding quantum system

times This will be a generalization of a previously proposedwhere the quantum tongues correspond to the parameter re-
relation[5,6] between classical diffusiod and the quantum

localization length, - T
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It should be noted that in the absence of dynamical localiza- .
tion, this equation is inadequate to capture a quantum re- Hm|||““|miiiiillm .....

sponse to classical transitions. One of the key points of this
paper is that crystal clear quantum fingerprints of classical

transitions are seen in not only the localized regime but also ||HH|““‘|H NH .
mmr i

in the ballistic and critical regimes. Our detailed studies as -
it
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FIG. 1. The KAM to a diffusive boundary where the shaded

described here suggest that classical-quantum correspon-
dence may be established at all times within linear re-
sponse to the change of parameters

The kicked Harper model is described by the time-
dependent Hamiltonian

1

[
(%]

% region describes the KAM phase corresponding to bounded diffu-
H(t)=L cogp)+K cogq) Z S(t—kK). 2 sion. The crosses show some of the parameter values with superdif-
k=—o fusive transport.
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. . FIG. 4. Classicaltop) and quantuntbottom) transport along the
FIG. 2. Quasienergy phase diagram h.(: .100) Wher.e_ the critical line K=L. The quantum results are for a quasienergy wave

shaded part corresponds to the zero transmission probability beyo'b%cket after 1000 time steps witt= 200N = 215

100 angular momentum lattice sites. An almost identical figure is ' ' '

obtained using a quasienergy wave packet corresponding to the . .
plane wave initial conditions. system were realized after spotting a rather broad quantum

peak. This suggests that extremely tiny AMs existing in a
very narrow parameter interval play an important role in the
gime with an extremely localized quasienergy state or &uantum transport{Also see Figs. 4 and 5.
wave packet of quasienergy states. Our results demonstrate The increase in the kinetic energy and hence the localiza-
that the KAM to diffusive boundary in the quantum system istjon length of the quatum model whose roots are traced to the
well described by Eq(1). It should be emphasized that quan- syperdiffusive classical transport is more or less described by
tum manifestation of the cascade of KAM tongues as seen iEq. (1), provided D is interpreted as some measure of
Fig. 2 exists for small values df. anomalous transport. Alternatively, this effect, which mani-
The diffusive regime in between the KAM tongues ap-fests itself as the enhancement of kinetic energy in both the
pears to be inhabited by the accelerator md@éds). These  quantum and the classical system, can be described in terms
periodic orbits inducing anomalous transport have a verngf the classical and the quantum obsevables such as
narrow stability window and hence require a very, very fined<p2>/d K. As we show below, this type of relationship be-
grid to see them. However, they are not missed by the quanween classical and quantum dynamics expressed in terms of
tum model and in fact the corresponding quantum peaks arg2d< p2>/dK is found to persist in the ballistic as well as
very broad. Figure 3 shows a superdiffusive spike due to & the critical phase and hence in the regimes where(Bq.
period-15 AM[7] and a hierarchy of island chains deep in- fajls to describe the quantum response to the classical tran-
side the chaotic sea and the corresponding response ofsgions.
localized quantum wave paCket. In our detailed exploration Figures 6-—8 ShOW C|assica| transitions and the corre-
of two-dimensional parameter space of the kicked Harpegponding quantum response in the absence of dynamical lo-
model, possibilities of the existence of AMs in the classicalcalization. The classical and the quantum transport continue
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FIG. 3. Variation in classicaltop) and quantunibottom) trans-

port (L=13.9) showing anomalous transport for very narrow pa- FIG. 5. Classical and quantum transport for 4 showing the
rameter values in between the second and the third tongue of Fig. tlassical peaks due to superdiffusive transport and the quantum re-
The quantum results are for a quasienergy wave packet after 10Gfponse to these transitions. Two curves describe the quasienergy
time steps th=200N=2%), wave packet after 2000 and 4000 time stepsrfbe= 200N =215,
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e \ FIG. 8. Same as Fig. 4 for smallér (nh=30) comparison of
0 2000 4000‘ 6000 8000 10 Figs. 3 and 4 suggest that &s—-0, the measure of the shaded
time regimes goes to zero and hence in the semiclassical limit, we have

a set of parameter valuésff the symmetry ling where the quan-

FIG. 6. Time evolution for some of the parameter values of Fig'tum states exhibit power-law localization

7 for fixedL=4 (nh=200N=2"9. The thicker and thinner lines,

respectively, show quantum and classical results,flmm top to Figure 8 compares time dynamics in classical and quan-
bottom K=6.4,6.2,4. tum systems in the regimes where the quatum dynamics is
not localized. Interestingly, the classical and the quantum

to follow each other in parameter along the symmetry linefollow each other in both time and parameter only along the
K=L (Fig. 6) where the quantum transport is critical as well K=L case. Thereforegnly along the symmetry liné&K=L,
as in the ballistic phaseK(>L) (Figs. 7 and & We would where the quantum quasienergy states are crit[ed
like to emphasize that quantum fingerprints of classical tranelassical-quantum correspondence appears to be reasonably
sitions in both these regimes cannot be described by relatiowell described by the Eherenfest theorem. KorL the
(1) as these phases corresponding to infinite localizatioquantum transport is ballistic but the model continues to re-
length. The figures clearly show enhancement of kinetic enspond to classical phase transitions, such as the sudden trig-
ergy in the(critical and ballistic phasg¢sdemonstrating the gering of superdiffusive behavior induced by the AMs just
awareness of the quantum system of the birth of AMs in thdike the L>K case when the quantum dynamics is localized.
corresponding classical model. Therefore, the relationship between quantum and classical
dynamics may be universal when measured by their response
to parameter changes.

We now investigate localization characteristics of
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10 = Ne guasienergy states describing infinite time dynamit$).
L ‘ For large# values, we see patches of localizegktendegl
8 [ states forK>L (L>K) where these two phases are intri-

cately nested, as seen in Figs. 7 and 8. It appears that as
decreases, these finite regimes shrink in size. We conjecture
, that as#—0, these localizedextended regimes forK
. § >L (L>K) have zero measure and hence in the semiclassi-
}/ 4 cal limit all that remains are the boundary points where the
& quasienergy states are critical. Therefore, we have a scattered
/ dust of points where the quantum states are critical, exhibit-
o ing power-law localization. Interestingly, the envelope of this
//‘ . - scattered dust of critical points more or less coincides with
( the classically diffusive phase, a regime outside the KAM
L L L L L tongues of Fig. 1. Our detailed study of a quasienergy phase
2 4 6 8 10 diagram for various values df [9] suggest a new interpre-
K tation of quantum response to classically chaotic dynamics.
FIG. 7. Quantum phase diagram for the=0 quasienergy state The sea of critical points embedded in the balligtimcal-
(nh=10). Shaded regions describe the localizbdllistic) phase ized) regime provides a very appealing picture of the quan-
for K>L (L>K). Along the boundary of these shaded regimestum fingerprints of classically chaotic dynamidd1],
reside the critical states. namely, the qguantum manifestation of a classically diffusive
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phase is a regime which envelops a sea of critical pointsecent suggestiof3] that the self-similar cantorus potential

exhibiting diffusive transport. may be the key should be further explored. However, the
Two key developments that are relevant to the question ofdea that the classical and the quantum systems appear to

quantum-classical correspondence are the concept of “bredspond similarly to parameter changes is interesting and

time” and a relationship between classical diffusion and the>U99€sts that a relationship between the classical and the
quantum localization length as described by Efj. The quantum behavior can be developed using an analytic ap-

: . roach within a linear response theory. We hope that this
work described here adds a new element to this as the qua be of classical-quantum correspondence can be proven rig-

tum fingerprints of classical transitions exist in the Iocal|zed,0rous|y from first principles.

critical, as well as ballistic, phases. As a generalization of EQ. The kicked Harper model has attracted a great deal of
(1), we propose that the classical and the quantum derivagttention for studying classical-quantum correspondence as
tives of the observable with respect to parameters: for exwell as for exploring superdiffusive transport in noninte-
ample,d(p?)/dK are proportional to each other and hencegrable Hamiltonian systenfd0]. A feature unveiled here is
may be a good candidate for establishing classical-quantuifie series of KAM tongues which are believed to be replicas
correspondence. In other words, we propose that the classic@l €ach other under a scaling transformation. Preliminary
and the quantum behavior are related by a linear respongdudies suggest that the same scaling also applies to the
theory. kicked Harper mixed phase space: i.e., phase space structure

The relation between quantum localization and classicaﬁt,arb'traryK’L values can be related to some other values of

dynamics in the quasi-integrable regime is pretty well under- =K andL=27. Additionally, K= /2, which approx-
y q 9 9 pretty mates the maximurK interval for the lowest KAM tongue

stood mathematic_ally by mean of a quantum vgrsion of theappears to have a special significance. or /2, paramet-
KAM theorem|[8] involving control of the tunneling effept. ric periodicity is simple: Phase space structureKat is
The fact that the KAM phase that appears as a series Qbjated to the one a¢,L + 27n. These intriguing details rel-

fractal tongues in two-dimensional parameter space is S@,ant g the kicked Harper model will be further investigated
well reproduced suggests that this argument is valid all the, e future.

way up to the KAM diffusive boundary. The failure of the
quantum system to follow the corresponding classical dy- The research of I.I.S. was supported by National Science
namics in the cantorus regime remains an open issue andrRoundation Grant No. DMR 0072813.
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